EKSPRESI GEN
Ekspresi gen adalah proses dimana informasi dari gen yang digunakan dalam sintesis produk gen fungsional. Produk-produk ini seringkali protein, tetapi dalam non-protein coding gen seperti gen rRNA atau gen tRNA, produk adalah RNA fungsional. Proses ekspresi gen digunakan oleh semua kehidupan yang dikenal - eukariota (termasuk organisme multisel), prokariota (bakteri dan archaea) dan virus - untuk menghasilkan mesin makromolekul untuk hidup.
Proses Ekspresi Gen dalam Organisme
Dalam tubuh manusia terdapat banyak gen (unit dasar hereditas dalam kehidupan organisme) yang nantinya akan terekspresi menjadi fenotip (sifat yang tampak), misalnya rambut hitam, kulit sawo matang, hidung mancung, dan sebagainya. Bagaimana suatu gen yang ukurannya sangat kecil dapat menjadikan rambut kita berwarna hitam?
Dalam istilah biologi molekuler kita kenal dengan istilah Dogma Sentral Biologi Molekuler. Apakah itu? Dogma di sini adalah suatu kerangka kerja untuk dapat memahami urutan transfer informasi antara biopolymer (DNA, RNA, protein) dengan cara yang paling umum dalam organisme hidup. Sehingga secara garis besar, dogma sentral maksudnya adalah semua informasi terdapat pada DNA, kemudian akan digunakan untuk menghasilkan molekul RNA melalui transkripsi, dan sebagian informasi pada RNA tersebut akan digunakan untuk menghasilkan protein melalui proses yang disebut translasi.
TRANSKRIPSI
Ini merupakan tahapan awal dalam proses sintesis protein yang nantinya proses tersebut akan berlanjut pada ekspresi sifat-sifat genetik yang muncul sebagai fenotip. Dan untuk mempelajari biologi molekuler tahap dasar yang harus kita ketahui adalah bagaimana mekanisme sintesis protein sehingga dapat terekspresi sebagai fenotip.
Transkripsi merupakan proses sintesis molekul RNA pada DNA templat. Proses ini terjadi pada inti sel / nukleus (Pada organisme eukariotik. Sedangkan pada organisme prokariotik berada di sitoplasma karena tidak memiliki inti sel) tepatnya pada kromosom.
Komponen yang terlibat dalam proses transkripsi yaitu :
- DNA templat (cetakan) yang terdiri atas basa nukleotida Adenin (A), Guanin (G), Timin (T), Sitosin (S)
- enzim RNA polimerase
- faktor-faktor transkripsi
- prekursor (bahan yang ditambahkan sebagai penginduksi).
Hasil dari proses sintesis tersebut adalah tiga macam RNA, yaitu :
- mRNA (messeger RNA)
- tRNA (transfer RNA)
- rRNA (ribosomal RNA)
Sebelum itu saya akan memaparkan terlebih dahulu bagian utama dari suatu gen. Gen terdiri atas : promoter, bagian struktural (terdiri dari gen yang mengkode suatu sifat yang akan diekspresikan), dan terminator.
Sedangkan struktur RNA polimerase terdiri atas : beta, beta-prime, alpha, sigma. Pada struktur beta dan beta-prime bertindak sebagai katalisator dalam transkripsi. Struktur sigma untuk mengarahkan agar RNA polimerase holoenzim hanya menempel pada promoter. Bagian yang disebut core enzim terdiri atas alpha, beta, dan beta-prime.
Tahapan dalam proses transkripsi pada dasarnya terdiri dari 3 tahap, yaitu :
- Inisiasi (pengawalan)
Transkripsi tidak dimulai di sembarang tempat pada DNA, tapi di bagian hulu (upstream) dari gen yaitu promoter. Salah satu bagian terpenting dari promoter adalah kotak Pribnow (TATA box). Inisiasi dimulai ketika holoenzim RNA polimerase menempel pada promoter. Tahapannya dimulai dari pembentukan kompleks promoter tertutup, pembentukan kompleks promoter terbuka, penggabungan beberapa nukleotida awal, dan perubahan konformasi RNA polimerase karena struktur sigma dilepas dari kompleks holoenzim.
- Elongasi (pemanjangan )
Proses selanjutnya adalah elongasi. Pemanjangan di sini adalah pemanjangan nukleotida. Setelah RNA polimerase menempel pada promoter maka enzim tersebut akan terus bergerak sepanjang molekul DNA, mengurai dan meluruskan heliks. Dalam pemanjangan, nukleotida ditambahkan secara kovalen pada ujung 3’ molekul RNA yang baru terbentuk. Misalnya nukleotida DNA cetakan A, maka nukleotida RNA yang ditambahkan adalah U, dan seterusnya. Laju pemanjangan maksimum molekul transkrip RNA berrkisar antara 30 – 60 nukleotida per detik. Kecepatan elongasi tidak konstan.
- Terminasi (pengakhiran)
Terminasi juga tidak terjadi di sembarang tempat. Transkripsi berakhir ketika menemui nukleotida tertentu berupa STOP kodon. Selanjutnya RNA terlepas dari DNA templat menuju ribosom.
Untuk proses selanjutnya (proses pembentukan protein) akan dijelaskan pada artikel selanjutnya.
Untuk proses selanjutnya (proses pembentukan protein) akan dijelaskan pada artikel selanjutnya.
TRANSLASI
Tahap selanjutnya setelah transkripsi adalah terjemahan.Penerjemahan adalah suatu proses penerjemahan urutan nukleotida molekul mRNA yang ada dalam rangkaian asam amino yang menyusun suatu polipeptida atau protein. Apa yang dibutuhkan dalam proses penerjemahan adalah: mRNA, ribosom, tRNA, dan asam amino.
Sebelumnya, akan dijelaskan tentang struktur ribosom. Ribosom terdiri atas subunit besar dan kecil. Ketika dua subunit digabungkan untuk membentuk sebuah monosom. subunit kecil berisi peptidil (P), dan Aminoasil (A). Sedangkan subunit besar mengandung Exit (E), P, dan A. Kedua subunit mengandung satu atau lebih molekul rRNA. rRNA sangat penting untuk mengidentifikasi bakteri pada tingkat biologi molekuler, pada prokariotik dan eukariotik 16 S 18 S.
Seperti transkripsi, terjemahan ini juga dibagi menjadi tiga tahap:
1. Inisiasi
Pertama tRNA mengikat asam amino, dan ini menyebabkan acara diaktifkan atau tRNA disebut asilasi-amino. Amino-asilasi proses dikatalisis oleh enzim tRNA sintetase. Kemudian ribosom mengalami pemisahan menjadi subunit besar dan kecil.Selanjutnya molekul mRNA subunit kecil menempel pada tongkat dengan kodon awal: 5 ‘- AGGAGG – 3′. Situs order dimana subunit kecil disebut urutan Shine-Dalgarno. Subunit kecil dapat menempel pada mRNA bila IF-3. IF-3/mRNA-fMet IF-2/tRNA-fMet pembentukan kompleks dan asam amino yang disebut N-formylmethionine dan memerlukan banyak GTP sebagai sumber energi. tRNA-fMet, melekat pada kodon pembuka P subunit kecil.Selanjutnya, subunit besar menempel pada subunit kecil. Dalam proses ini IF-1 dan IF-2 dilepas dan GTP dihidrolisis terhadap GDP, dan siap untuk perpanjangan.
Pertama tRNA mengikat asam amino, dan ini menyebabkan acara diaktifkan atau tRNA disebut asilasi-amino. Amino-asilasi proses dikatalisis oleh enzim tRNA sintetase. Kemudian ribosom mengalami pemisahan menjadi subunit besar dan kecil.Selanjutnya molekul mRNA subunit kecil menempel pada tongkat dengan kodon awal: 5 ‘- AGGAGG – 3′. Situs order dimana subunit kecil disebut urutan Shine-Dalgarno. Subunit kecil dapat menempel pada mRNA bila IF-3. IF-3/mRNA-fMet IF-2/tRNA-fMet pembentukan kompleks dan asam amino yang disebut N-formylmethionine dan memerlukan banyak GTP sebagai sumber energi. tRNA-fMet, melekat pada kodon pembuka P subunit kecil.Selanjutnya, subunit besar menempel pada subunit kecil. Dalam proses ini IF-1 dan IF-2 dilepas dan GTP dihidrolisis terhadap GDP, dan siap untuk perpanjangan.
2. Pemanjangan
Perbedaan dalam proses transkripsi, terjemahan dari asam amino diperpanjang. Langkah-langkah yang diambil dalam proses perpanjangan, yang pertama adalah pengikatan tRNA ke sisi A pada ribosom. Transportasi akan membentuk ikatan peptida.
Perbedaan dalam proses transkripsi, terjemahan dari asam amino diperpanjang. Langkah-langkah yang diambil dalam proses perpanjangan, yang pertama adalah pengikatan tRNA ke sisi A pada ribosom. Transportasi akan membentuk ikatan peptida.
3. Penghentian
Terjemahan akan berakhir pada satu waktu dari tiga kodon terminasi (UAA, UGA, UAG) yang berada dalam posisi A pada mRNA mencapai ribosom. Pada E. coli ketiga sinyal penghentian proses translasi diakui oleh protein yang disebut faktor rilis (RF).Anil RF pada kodon terminasi mengaktifkan enzim transferase peptidil yang menghidrolisis ikatan antara polipeptida dng tRNA pada P dan menyebabkan tRNA kosong translokasi ke sisi memiliki E (exit).
Terjemahan akan berakhir pada satu waktu dari tiga kodon terminasi (UAA, UGA, UAG) yang berada dalam posisi A pada mRNA mencapai ribosom. Pada E. coli ketiga sinyal penghentian proses translasi diakui oleh protein yang disebut faktor rilis (RF).Anil RF pada kodon terminasi mengaktifkan enzim transferase peptidil yang menghidrolisis ikatan antara polipeptida dng tRNA pada P dan menyebabkan tRNA kosong translokasi ke sisi memiliki E (exit).
Itulah mekanisme transkripsi dan proses penerjemahan. Proses selanjutnya adalah protein tersebut akan diekspresikan oleh tubuh kita dalam bentuk fenotipe.
REPLIKASI DNA
Proses replikasi DNA :
Pertama adanya replication origin, kemudian pembukaan local DNA helix dan adanya RNA primer synthesis. Replikasi:> ORC menempel pada ACS (ORI) :> sehingga pilinan membuka dengan bantuan helikase. Perlu DNA primase untuk membuat RNA primer sintesis, karena DNA polymerase tidak bisa mensintesis tanpa ada primer.
Kemudian terjadi proses replikasi. Karena arah DNA anti parallel maka perlu Leading-strand dan lagging strand. Dari ORI didapatkan 2 replication fork.
Kemudian terjadi proses replikasi. Karena arah DNA anti parallel maka perlu Leading-strand dan lagging strand. Dari ORI didapatkan 2 replication fork.
Ada ORI dan helikase yang membuka pilinan terus sampai terbentuk replication bubble.
Untuk replikasi perlu:
Untuk replikasi perlu:
1. ORI
2. Helikase
3. Replication bubble
Selanjutnya perlu primase untuk membuka primary. Merah RNA, Biru DNA. Bubble semakin besar, replikasi berlanjut dan 1 ORI akan membentuk 2 replication fork
Replication fork pada plasmid. Terdapat 2 parental strand (run occusite direction) yang bersifat antiparalel: 5’-3’ dan 3’-5’. DNA polymerase hanya mensintesis/mempolimerasi dari arah 5’-3’. Satu strain bisa secara kontinyu disintesis yaitu yang 5’-3 (leading strain). Sementara yang 3’-5’ tidak bisa dibentuk, tetapi tetap harus dibentuk dengan 5’-3’, sehingga perlu satu strain yang terbentuk dari small discontinue peaces yang disebut sebagai lagging strain. Small peaces disebut okazaki fragmen.
Replication fork pada plasmid. Terdapat 2 parental strand (run occusite direction) yang bersifat antiparalel: 5’-3’ dan 3’-5’. DNA polymerase hanya mensintesis/mempolimerasi dari arah 5’-3’. Satu strain bisa secara kontinyu disintesis yaitu yang 5’-3 (leading strain). Sementara yang 3’-5’ tidak bisa dibentuk, tetapi tetap harus dibentuk dengan 5’-3’, sehingga perlu satu strain yang terbentuk dari small discontinue peaces yang disebut sebagai lagging strain. Small peaces disebut okazaki fragmen.
Pada leading strand karena arahnya sudah dari 5’-3’ maka tinggal menambah saja. Sedangkan pasangannya (lagging strain) karena arahnya 3’-5’ maka hanya diam, tetapi pada titik tertentu akan ditambahkan primase lagi dan akan mensintesis lagi dari arah 5’-3’ (okazaki fragmen: fragmen2 potongan kecil yang terjadi pada saat replikasi pada lagging strain)-> Pada lagging strand arahnya dari 3’-5’
Okazaki fragment: fragment potongan kecil pada saat replikasi yang terjadi pada lagging strand template. Yang terjadi pd Okazaki fragment (OF): kita punya RNA primer sehingga di OF ada RNA-DNA hybrid. Tetapi RNA harus dibuang oleh RNase H. Setelah itu untuk menggantikan RNA dibutuhkan polymerase delta (delta) yang bisa bersifat exonuclease tetapi juga bisa bersifat endonuclease, yaitu mereplace atau menempatkan dNTP. Pada saat RNA dibuang maka akan digantikan dengan DNA polymerase delta yang baru sampai hilang sama sekali. Tetapi masih belum lengkap karena masih ada celah sehingga perlu DNA ligase untuk menempelkan. Akhirnya diperoleh 2 strain yang sama persis.
Protein yang dibutuhkan dalam replication fork yaitu:
Protein yang dibutuhkan dalam replication fork yaitu:
- Helicase: fungsinya untuk membuka (unwinding) parental DNA
- Single-stranded DNA-binding protein: untuk menstabilisasi unwinding, untuk mencegah DNA yang single-stranded agar tetap stabil (tidak double straded lagi).
- Topoisomerase: untuk memotong (breakage) pada tempat-tempat tertentu.
DNA Polimerase yang memiliki DNA single-strand binding protein monomer yang bertugas untuk mencegah supaya DNA tidak hanya menempel dengan lawannya tetapi juga bisa membentuk hairpins.
Karena sudah terbuka sehingga ada basa-basa tertentu yang saling berpasangan sehingga terbentuk hairpins. Supaya tidak terbentuk hairpins maka didatangkan single strand binding protein supaya tetap lurus dan tidak berbelok-belok.
Topoisomerase, cirinya memotong DNA pada tempat tertentu sehingga mudah untuk memutar karena sudah dipotong. Tugasnya adalah memasangkan kembali DNA yang terpotong.
Protein aksesori:
Brace protein, : Replication factor C (RFC), supaya DNA polimerasenya menempelnya stabil (tidak mudah terlepas dari DNA template).
Sliding-clamps protein, supaya kedudukannya stabil dan tidak goyang2.
Proses pada leading dan lagging strand berlangsung secara bersamaan, tetapi proses pada lagging bertahap. Ada DNA polimerase dan sliding clamps. Sintesis terjadi pada leading strand terlebih dahulu. Pada tahap tertentu DNA primase akan ditambahkan sehingga clamps-nya datang lagi. Setelah proses replikasi selesai maka RNA akan segera dibuang digantikan dengan DNA yang baru.
Perangkat untuk replikasi: DNA polimerasi, brace, clamp, DNA helicase, single-strand binding protein, primase, topoisomerase
. Setelah direplikasi ujung DNA harus ada telomere (ujung DNA). Bila tidak ada telomere maka kromosom akan saling menempel sehingga kromosom tidak 46 tetapi dalam bentuk gandeng2 (tidak diketahui).
Chromosome end:
Pada lagging strand, di akhir replikasi ujungnya akan dihilangkan, RNA juga akan dihilangkan, sehingga hasil replikasi menjadi lebih pendek. Hal ini terjadi karena menggunakan primer RNA untuk proses replikasi, dan RNA primer setelah replikasi harus dibuang dan tidak bisa digantikan. Untuk mengatasinya maka diadakan telomerase yang dibuat berkali-kali. (slide 76: TTGGGGTTGGGTTGGGG). Telomer dibuat oleh enzim telomerase. Telomer: ujung yang merupakan non coding DNA sehingga kalau memendek tidak akan menjadi masalah karena tidak mengkode apapun. Telomer diadakan untuk mengantisipasi pada saat replikasi karena DNA akan memendek. EXTENDS 3’ PRIMARY GENE --> TELOMERE, dan enzim yang membuatnya : telomerase. Semua sel selain stem sel tidak punya telomere. Pada saat sel replikasi maka akan selalu memendek. Sampai pada suatu titik tertentu yang merupakan signal bagi sel untuk berhenti membelah. Karena kemampuan sel untuk membelah dibatasi oleh panjangnya telomerase. Pada saat telomere memendek sampai batas tertentu maka akan memberikan sinyal bagi sel untuk berhenti membelah. Sedangkan pada stem sel yang memiliki telomerase, maka kemampuan membelahnya tidak terbatas karena pada saat telomere habis maka telomerase akan membentuk telomere baru. Hal ini yang dimanfaatkan oleh sel kanker karena sel kanker memiliki telomerase sehingga sel kanker dapat terus membelah. Manusia memiliki kemampuan replikasi sel yang terbatas karena keterbatasan telomere, shg bila telomere habis sel akan berhenti membelah.
Tidak ada komentar:
Posting Komentar