Minggu, 05 Oktober 2014

Skenario 4 Part 2


Author : Cindra PWS

More Information
2. macam-macam PCR (Klik Disini)

Trigger (from tutorial 7)
1.       Pucat dan lesu
2.       Penurunan MCV dan Penurunan MCHC
3.       Apusan darah perifer, anisositosis, dan boikilositosis
4.       Sel darah merah berinti, kontrektid
5.       Elektroforesis terjadi peningkatan Hb F dan Hb A2
6.       Analisis DNA terjadi 2 mutasi pada gen globin substansi nukleotid tunggal kodon 26 GAGAAG dan mutasi di intron 1 (IV-5gc)
7.       Ayah carries mutasi kromosom 26
8.       Ibunya heterozigot pada intron 1
Teknik Biologi Molekuler
Sejak akhir 1950-an dan awal 1960-an, ahli biologi molekuler telah belajar untuk mengkarakterisasi, mengisolasi, dan memanipulasi komponen molekul sel dan organisme. Komponen-komponen ini mencakup DNA, repositori informasi genetik; RNA, kerabat dekat DNA yang fungsinya melayani sebagai berkisar dari copy pekerjaan sementara DNA untuk fungsi struktural dan enzimatik aktual serta bagian fungsional dan struktural dari aparat translasi, dan protein, jenis struktural dan enzimatik utama dari molekul dalam sel.
1.    Ekspresi kloning
Salah satu teknik yang paling dasar biologi molekuler untuk mempelajari fungsi protein adalah kloning ekspresi. Dalam teknik ini, DNA coding untuk suatu protein bunga kloning (menggunakan PCR dan / atau enzim restriksi) ke dalam sebuah plasmid (dikenal sebagai vektor ekspresi). Plasmid ini mungkin memiliki elemen promotor khusus untuk mendorong produksi protein yang menarik, dan mungkin juga memiliki penanda resistensi antibiotik untuk membantu mengikuti plasmid.
Plasmid ini dapat dimasukkan ke dalam sel-sel bakteri baik atau hewan. Memperkenalkan DNA ke dalam sel bakteri dapat dilakukan dengan transformasi (melalui penyerapan DNA telanjang), konjugasi (melalui kontak sel-sel) atau dengan transduksi (melalui vektor virus). Memperkenalkan DNA ke dalam sel eukariotik, seperti sel hewan, dengan cara fisik atau kimia yang disebut transfeksi. Beberapa teknik transfeksi berbeda tersedia, seperti transfeksi kalsium fosfat, elektroporasi, injeksi dan transfeksi liposom. DNA juga dapat diperkenalkan ke dalam sel eukariotik menggunakan virus atau bakteri sebagai pembawa, yang terakhir ini kadang-kadang disebut bactofection dan khususnya menggunakan Agrobacterium tumefaciens. Plasmid dapat diintegrasikan ke dalam genom, menghasilkan transfeksi stabil, atau mungkin tetap independen dari genom, yang disebut transfeksi sementara.
Dalam kedua kasus, DNA coding untuk suatu protein yang menarik sekarang di dalam sel, dan protein sekarang dapat dinyatakan. Berbagai sistem, seperti promotor diinduksi dan spesifik sel-sinyal faktor, yang tersedia untuk membantu mengekspresikan protein kepentingan di tingkat tinggi. Jumlah besar protein kemudian dapat diekstrak dari sel bakteri atau eukariotik. Protein dapat diuji untuk aktivitas enzimatik bawah berbagai situasi, protein dapat mengkristal sehingga struktur tersier yang dapat dipelajari, atau, dalam industri farmasi, aktivitas obat baru terhadap protein dapat dipelajari.
2.    Polymerase chain reaction (PCR)
Reaksi berantai polimerase adalah teknik yang sangat serbaguna untuk menyalin DNA. Secara singkat, PCR memungkinkan urutan DNA tunggal untuk disalin (jutaan kali), atau diubah dengan cara-cara yang telah ditentukan. Sebagai contoh, PCR dapat digunakan untuk memperkenalkan situs enzim restriksi, atau untuk bermutasi (mengubah) basa tertentu DNA, yang terakhir adalah metode disebut sebagai "perubahan Cepat". PCR juga dapat digunakan untuk menentukan apakah suatu fragmen DNA tertentu ditemukan di perpustakaan cDNA. PCR memiliki banyak variasi, seperti PCR transkripsi terbalik (RT-PCR) untuk amplifikasi RNA, dan, baru-baru ini, real-time PCR (QPCR) yang memungkinkan untuk pengukuran kuantitatif molekul DNA atau RNA.
3.    Gel elektroforesis
Elektroforesis gel adalah salah satu alat utama biologi molekuler. Prinsip dasarnya adalah bahwa DNA, RNA, dan protein semuanya dapat dipisahkan melalui medan listrik. Dalam elektroforesis gel agarosa, DNA dan RNA dapat dipisahkan berdasarkan ukuran dengan menjalankan DNA melalui gel agarosa. Protein dapat dipisahkan berdasarkan ukuran dengan menggunakan gel SDS-PAGE, atau berdasarkan ukuran dan muatan listrik mereka dengan menggunakan apa yang dikenal sebagai elektroforesis gel 2D.
4.    Makromolekul blotting dan menyelidik
Istilah''utara'',''Barat''dan''''timur blotting berasal dari apa yang awalnya adalah lelucon biologi molekuler yang dimainkan di''''jangka blotting Selatan, setelah teknik yang dijelaskan oleh Edwin Selatan untuk dengan hibridisasi DNA dari dihapuskan. Patricia Thomas, pengembang dari noda RNA yang kemudian menjadi dikenal sebagai noda''''utara sebenarnya tidak menggunakan istilah itu. Kombinasi lebih lanjut dari teknik ini menghasilkan istilah-istilah seperti''southwesterns''(protein-DNA hybridizations),''northwesterns''(untuk mendeteksi protein-RNA interaksi) dan farwesterns''''(interaksi protein-protein), yang semuanya saat ini ditemukan dalam literatur.
5.    Southern blotting
Dinamai setelah penemunya, biologi Edwin Selatan, Selatan Blot adalah metode untuk menyelidiki keberadaan sekuens DNA tertentu dalam sampel DNA. DNA sampel sebelum atau setelah pencernaan enzim restriksi dipisahkan dengan elektroforesis gel dan kemudian ditransfer ke membran dengan blotting melalui aksi kapiler. Membran tersebut kemudian terkena probe DNA berlabel yang memiliki urutan basa pelengkap untuk urutan DNA pada bunga. Kebanyakan protokol asli yang digunakan label radioaktif, namun non-radioaktif alternatif yang sekarang tersedia. Southern blotting kurang umum digunakan dalam ilmu laboratorium karena kapasitas teknik lain, seperti PCR, untuk mendeteksi urutan DNA spesifik dari sampel DNA. Bercak ini masih digunakan untuk beberapa aplikasi, bagaimanapun, seperti mengukur jumlah salinan transgen pada tikus transgenik, atau rekayasa gen sel induk garis KO embrio.
6.    Northern blotting
Blot utara digunakan untuk mempelajari pola ekspresi dari jenis tertentu molekul RNA sebagai perbandingan relatif antara set sampel yang berbeda dari RNA. Ini pada dasarnya adalah kombinasi dari denaturasi RNA elektroforesis gel, dan sebuah noda. Dalam proses ini RNA dipisahkan berdasarkan ukuran dan kemudian ditransfer ke membran yang kemudian diperiksa dengan pelengkap berlabel urutan kepentingan. Hasilnya dapat digambarkan melalui berbagai cara tergantung pada label yang digunakan, namun hasil yang paling dalam penyataan band yang mewakili ukuran RNA terdeteksi dalam sampel. Intensitas band-band ini berkaitan dengan jumlah RNA target dalam sampel yang dianalisis. Prosedur ini umumnya digunakan untuk mempelajari kapan dan berapa banyak ekspresi gen yang terjadi dengan mengukur berapa banyak bahwa RNA hadir dalam sampel yang berbeda. Ini adalah salah satu alat yang paling dasar untuk menentukan pada waktu apa, dan dalam kondisi apa, gen-gen tertentu yang dinyatakan dalam jaringan hidup.
7.    Western blotting
Antibodi terhadap protein yang paling dapat dibuat dengan menyuntikkan sejumlah kecil protein menjadi binatang seperti mouse, kelinci, domba, atau keledainya (antibodi poliklonal) atau diproduksi dalam kultur sel (antibodi monoklonal). Antibodi ini dapat digunakan untuk berbagai teknik analisis dan preparatif.
Di barat blotting, protein yang pertama dipisahkan oleh ukuran, dalam gel tipis terjepit di antara dua pelat kaca dalam teknik yang dikenal sebagai SDS-PAGE (natrium sulfat dodesil poliakrilamida elektroforesis gel). Protein dalam gel kemudian ditransfer ke PVDF, nitroselulosa, membran nilon atau dukungan lainnya. Membran ini kemudian bisa dideteksi dengan solusi antibodi. Antibodi yang secara khusus mengikat protein yang menarik kemudian dapat divisualisasikan oleh berbagai teknik, termasuk produk berwarna, chemiluminescence, atau autoradiografi. Seringkali, antibodi diberi label dengan enzim. Ketika substrat chemiluminescent terkena enzim itu memungkinkan deteksi. Menggunakan teknik western blotting memungkinkan deteksi tidak hanya tetapi juga analisis kuantitatif.
Metode analog dengan Barat blotting dapat digunakan untuk langsung noda protein tertentu dalam sel hidup atau bagian jaringan. Namun, metode''''immunostaining, seperti IKAN, lebih sering digunakan dalam penelitian biologi sel.
8.    Timur blotting
Teknik blotting Timur adalah untuk mendeteksi modifikasi pasca-translasi protein. Protein mengeringkan ke nitroselulosa membran PVDF atau yang diperiksa untuk modifikasi menggunakan substrat tertentu.
9.    Array
Sebuah array DNA adalah kumpulan bintik-bintik melekat pada dukungan solid seperti slide mikroskop dimana spot masing-masing berisi satu atau lebih beruntai tunggal oligonukleotida fragmen DNA. Array memungkinkan untuk meletakkan jumlah besar bintik-bintik yang sangat kecil (100 diameter micrometre) pada slide tunggal. Setiap tempat memiliki molekul DNA fragmen yang melengkapi urutan DNA tunggal (mirip dengan blotting Selatan). Sebuah variasi dari teknik ini memungkinkan ekspresi gen dari suatu organisme pada tahap tertentu dalam pembangunan yang berkualitas (profiling ekspresi). Dalam teknik ini RNA dalam jaringan adalah terisolasi dan diubah menjadi cDNA berlabel. Ini cDNA ini kemudian hibridisasi dengan fragmen di array dan visualisasi hibridisasi dapat dilakukan. Sejak beberapa array dapat dilakukan dengan posisi yang sama persis fragmen mereka sangat berguna untuk membandingkan ekspresi gen dari dua jaringan yang berbeda, seperti jaringan sehat dan kanker. Juga, kita dapat mengukur apa gen disajikan dan bagaimana perubahan ekspresi yang dengan waktu atau dengan faktor lain. Sebagai contoh, ragi roti yang umum itu,''Saccharomyces cerevisiae'', mengandung sekitar 7000 gen, dengan microarray, orang dapat mengukur secara kualitatif bagaimana gen masing-masing dinyatakan, dan bagaimana bahwa perubahan ekspresi, misalnya, dengan perubahan suhu.
Ada banyak cara yang berbeda untuk mengarang mikroarray; yang paling umum adalah chip silikon, mikroskop slide dengan bercak ~ 100 diameter micrometre, array kustom, dan array dengan bercak yang lebih besar pada membran berpori (macroarrays). Ada bisa dimana saja dari 100 spot ke lebih dari 10.000 pada array yang diberikan.
Array juga dapat dibuat dengan molekul lain dari DNA. Sebagai contoh, sebuah array antibodi dapat digunakan untuk menentukan apa yang protein atau bakteri yang hadir dalam sampel darah.
10. Oligonukleotida spesifik alel
Oligonukleotida alel spesifik (ASO) adalah teknik yang memungkinkan deteksi mutasi basa tunggal tanpa memerlukan elektroforesis PCR atau gel. Pendek (20-25 nukleotida panjang), probe berlabel terkena DNA target non-terfragmentasi. Hibridisasi terjadi dengan kekhususan tinggi karena panjang pendek dari probe dan bahkan perubahan basa tunggal akan menghambat hibridisasi. DNA target kemudian dicuci dan probe label yang tidak berhibridisasi dihapus. DNA target kemudian dianalisa untuk kehadiran probe melalui radioaktivitas atau fluoresensi. Dalam percobaan ini, seperti dalam kebanyakan teknik biologi molekular, kontrol harus digunakan untuk memastikan percobaan berhasil. Illumina Metilasi Assay adalah contoh dari sebuah metode yang mengambil keuntungan dari teknik ASO untuk mengukur satu perbedaan pasangan basa secara berurutan.
11. Teknologi kuno
Dalam biologi molekular, prosedur dan teknologi yang terus-menerus dikembangkan dan teknologi yang lebih tua ditinggalkan. Misalnya, sebelum munculnya gel elektroforesis DNA (agarosa atau Polyacrylamide), ukuran molekul DNA biasanya ditentukan oleh tingkat sedimentasi di gradien sukrosa, teknik lambat dan padat karya yang membutuhkan instrumentasi mahal; sebelum gradien sukrosa, viscometry digunakan .

Polymerase Chain Reacton (PCR)
Polymerase Chain Reacton (PCR) adalah suatu teknik sintesis dan amplifikasi DNA secara in vitro. Teknik ini pertama kali dikembangkan oleh Karry Mullis pada tahun 1985. Teknik PCR dapat digunakan untuk mengamplifikasi segmen DNA dalam jumlah jutaan kali hanya dalam beberapa jam. Dengan diketemukannya
teknik PCR di samping juga teknik-teknik lain seperti sekuensing DNA, telah merevolusi bidang sains dan teknologi khususnya di bidang diagnosa penyakit genetik, kedokteran forensik dan evolusi molekular.

PRINSIP-PRINSIP UMUM PCR
Komponen- komponen yang diperlukan pada proses PCR adalah template DNA; sepasang primer, yaitu suatu oligonukleotida pendek yang mempunyai urutan nukleotida yang komplementer dengan urutan nukleotida DNA templat; dNTPs (Deoxynucleotide triphosphates); buffer PCR; magnesium klorida (MgCl2)
dan enzim polimerase DNA.
Proses PCR melibatkan beberapa tahap yaitu: (1) pra-denaturasi DNA templat; (2) denaturasi DNA templat; (3) penempelan primer pada template (annealing); (4) pemanjangan primer (extension) dan (5) pemantapan (postextension). Tahap (2) sampai dengan (4) merupakan tahapan berulang (siklus), di mana pada setiap siklus terjadi duplikasi jumlah DNA.
PCR adalah suatu teknik yang melibatkan beberapa tahap yang berulang (siklus) dan pada setiap siklus terjadi duplikasi jumlah target DNA untai ganda. Untai ganda DNA templat (unamplified DNA) dipisahkan dengan denaturasi termal dan kemudian didinginkan hingga mencapai suatu suhu tertentu untuk memberi waktu pada primer menempel (anneal primers) pada daerah tertentu dari target DNA. Polimerase DNA digunakan untuk memperpanjang primer (extend primers) dengan adanya dNTPs (dATP, dCTP, dGTP dan dTTP) dan buffer yang sesuai. Umumnya keadaan ini dilakukan antara 20 – 40 siklus. Target DNA yang diinginkan (short ”target” product) akan meningkat secara eksponensial setelah siklus keempat dan DNA non-target (long product) akan meningkat secara linier. Jumlah kopi fragmen DNA target (amplicon) yang dihasilkan pada akhir siklus PCR dapat dihitung secara teoritis menurut rumus:
Y = (2n – 2n)X
Y : jumlah amplicon
n : jumlah siklus
X : jumlah molekul DNA templat semula
Jika X = 1 dan jumlah siklus yang digunakan adalah 30, maka jumlah amplicon yang diperoleh pada akhir proses PCR adalah 1.074 x 109. Dari fenomena ini dapat terlihat bahwa dengan menggunakan teknik PCR dimungkinkan untuk mendapatkan fragmen DNA yang diinginkan (amplicon) secara eksponensial dalam waktu relatif singkat. Umumnya jumlah siklus yang digunakan pada proses PCR adalah 30
siklus. Penggunaan jumlah siklus lebih dari 30 siklus tidak akan meningkatkan jumlah amplicon secara bermakna dan memungkinkan peningkatan jumlah produk yang non-target. Perlu diingat bahwa di dalam proses PCR effisiensi amplifikasi tidak terjadi 100 %, hal ini disebabkan oleh target templat terlampau banyak, jumlah polimerase DNA terbatas dan kemungkinan terjadinya reannealing untai target.

PELAKSANAAN PCR
Untuk melakukan proses PCR diperlukan komponen-komponen seperti yang telah disebutkan di atas. Pada bagian ini akan dijelaskan secara rinci kegunaan dari masing-masing komponen tersebut.

1.    Templat DNA
Fungsi DNA templat di dalam proses PCR adalah sebagai cetakan untuk pembentukan molekul DNA baru yang sama. Templat DNA ini dapat berupa DNA kromosom, DNA plasmid ataupun fragmen DNA apapun asal di dalam DNA templat tersebut mengandung fragmen DNA target yang dituju. Penyiapan DNA templat untuk proses PCR dapat dilakukan dengan menggunakan metode lisis sel ataupun dengan cara melakukan isolasi DNA kromosom atau DNA plasmid dengan menggunakan metode standar yang ada. Pemilihan metode yang digunakan di dalam penyiapan DNA templat tergantung dari tujuan eksperimen.
Pembuatan DNA templat dengan menggunakan metode lisis dapat digunakan secara umum, dan metode ini merupakan cara yang cepat dan sederhana untuk pendedahan DNA kromosom ataupun DNA plasmid. Prinsip metode lisis adalah perusakan dinding sel tanpa harus merusak DNA yang diinginkan. Oleh karena itu perusakan dinding sel umumnya dilakukan dengan cara memecahkan dinding sel menggunakan buffer lisis. Komposisi buffer lisis yang digunakan tergantung dari jenis sampel. Beberapa contoh buffer lisis yang biasa digunakan mempunyai komposisi sebagai berikut: 5 mM Tris-Cl pH8,5; 0,1 mM EDTA pH 8,5; 0,5 % Tween-20 dan 100 ug/mL Proteinase-K (ditambahkan dalam keadaan segar). Buffer lisis ini umumnya digunakan untuk jenis sampel yang berasal dari biakan, sel-sel epitel dan sel akar rambut. Contoh lain dari buffer lisis adalah buffer lisis K yang mempunyai komposisi sebagai berikut: buffer PCR (50mM KCl, 10-20mM Tris-Cl dan 2,5mM MgCl2); 0,5 % Tween-20 dan 100 ug/mL Proteinase-K (ditambahkan dalam keadaan segar). Buffer lisis K ini biasanya digunakan untuk melisis sampel yang berasal dari sel darah dan virus.
Selain dengan cara lisis, penyiapan DNA templat dapat dilakukan dengan cara mengisolasi DNA kromosom ataupun DNA plasmid menurut metode standar yang tergantung dari jenis sampel asal DNA tersebut diisolasi. Metode isolasi DNA kromosom atau DNA plasmid memerlukan tahapan yang lebih kompleks dibandingkan dengan penyiapan DNA dengan menggunakan metode lisis. Prinsip isolasi DNA kromosom atau DNA plasmid adalah pemecahan dinding sel, yang diikuti dengan pemisahan DNA kromosom / DNA plasmid dari komponen-komponen lain. Dengan demikian akan diperoleh kualitas DNA yang lebih baik dan murni.
2.    Primer
Keberhasilan suatu proses PCR sangat tergantung dari primer yang digunakan. Di dalam proses PCR, primer berfungsi sebagai pembatas fragmen DNA target yang akan diamplifikasi dan sekaligus menyediakan gugus hidroksi (-OH) pada ujung 3’ yang diperlukan untuk proses eksistensi DNA. Perancangan primer dapat dilakukan berdasarkan urutan DNA yang telah diketahui ataupun dari urutan protein yang dituju. Data urutan DNA atau protein bisa didapatkan dari database GenBank. Apabila urutan DNA maupun urutan protein yang dituju belum diketahui maka perancangan primer dapat didasarkan pada hasil analisis homologi dari urutan DNA atau protein yang telah diketahui mempunyai hubungan kekerabatan yang terdekat. Dalam melakukan perancangan primer harus dipenuhi kriteria-kriteria sebagai berikut:
a.     Panjang primer
Di dalam merancang primer perlu diperhatikan panjang primer yang akan dipilih. Umumnya panjang primer berkisar antara 18 – 30 basa. Primer dengan panjang kurang dari 18 basa akan menjadikan spesifisitas primer rendah. Untuk ukuran primer yang pendek kemungkinan terjadinya mispriming (penempelan primer di tempat lain yang tidak diinginkan) tinggi, ini akan menyebabkan berkurangnya spesifisitas dari primer tersebut yang nantinya akan berpengaruh pada efektifitas dan efisiensi proses PCR. Sedangkan untuk panjang primer lebih dari 30 basa tidak akan meningkatkan spesifisitas primer secara bermakna dan ini akan menyebabkan lebih mahal.
b.     Komposisi primer.
Dalam merancang suatu primer perlu diperhatikan komposisinya. Rentetan nukleotida yang sama perlu dihindari, hal ini dapat menurunkan spesifisitas primer yang dapat memungkinkan terjadinya mispriming di tempat lain. Kandungan (G+C)) (% jumlah G dan C) sebaiknya sama atau lebih besar dari kandungan (G+C) DNA target. Sebab primer dengan % (G+C) rendah diperkirakan tidak akan mampu berkompetisi untuk menempel secara efektif pada tempat yang dituju dengan demikian akan menurunkan efisiensi proses PCR. Selain itu, urutan nukleotitda pada ujung 3’ sebaiknya G atau C. Nukleotida A atau T lebih toleran terhadap mismatch dari pada G atau C, dengan demikian akan dapat menurunkan spesifisitas primer.
c.     Melting temperature (Tm)
Melting temperatur (Tm) adalah temperatur di mana 50 % untai ganda DNA terpisah. Pemilihan Tm suatu primer sangat penting karena Tm primer akan berpengaruh sekali di dalam pemilihan suhu annealing proses PCR. Tm berkaitan dengan komposisi primer dan panjang primer. Secara teoritis Tm primer dapat dihitung dengan menggunakan rumus [2(A+T) + 4(C+G)]. Sebaiknya Tm primer berkisar antara 50 – 65 oC.
d.     Interaksi primer-prime
Interaksi primer-primer seperti self-homology dan cross-homology harus dihindari. Demikian juga dengan terjadinya mispriming pada daerah lain yang tidak dikehendaki, ini semua dapat menyebabkan spesifisitas primer menjadi rendah dan di samping itu konsentrasi primer yang digunakan menjadi berkurang selama proses karena terjadinya mispriming. Keadaan ini akan berpengaruh pada efisiensi proses PCR.
3.    dNTPs (deoxynucleotide triphosphates)
dNTPs merupakan suatu campuran yang terdiri atas dATP (deoksiadenosin trifosfat), dTTP (deoksitimidin trifosfat) , dCTP (deoksisitidin trifosfat) dan dGTP (deoksiguanosin trifosfat). Dalam proses PCR dNTPs bertindak sebagai building block DNA yang diperlukan dalam proses ekstensi DNA. dNTP akan menempel pada gugus –OH pada ujung 3’ dari primer membentuk untai baru yang komplementer dengan untai DNA templat. Konsentrasi optimal dNTPs untuk proses PCR harus ditentukan.
4.    Buffer PCR dan MgCl2
Reaksi PCR hanya akan berlangsung pada kondisi pH tertentu. Oleh karena itu untuk melakukan proses PCR diperlukan buffer PCR. Fungsi buffer di sini adalah untuk menjamin pH medium. Selain buffer PCR diperlukan juga adanya ion Mg2+, ion tersebut berasal dari berasal MgCl2. MgCl2 bertindak sebagai kofaktor yang berfungsi menstimulasi aktivitas DNA polimerase. Dengan adanya MgCl2 ini akan meningkatkan interaksi primer dengan template yang membentuk komplek larut dengan dNTP (senyawa antara). Dalam proses PCR konsentrasi MgCl2 berpengaruh pada spesifisitas dan perolehan proses. Umumnya buffer PCR sudah mengandung senyawa MgCl2 yang diperlukan. Tetapi disarankan sebaiknya antara MgCl2 dan buffer PCR dipisahkan supaya dapat dengan mudah dilakukan variasi konsentrasi MgCl2 sesuai yang diperlukan.
5.    Enzim Polimerase DNA
Enzim polimerase DNA berfungsi sebagai katalisis untuk reaksi polimerisasi DNA. Pada proses PCR enzim ini diperlukan untuk tahap ekstensi DNA. Enzim polimerase DNA yang digunakan untuk proses PCR diisolasi dari bakteri termofilik atau hipertermofilik oleh karena itu enzim ini bersifat termostabil sampai temperatur 95 oC. Aktivitas polimerase DNA bergantung dari jenisnya dan dari mana bakteri tersebut diisolasi . Sebagai contoh adalah enzim Pfu polimerase (diisolasi dari bakteri Pyrococcus furiosus) mempunyai aktivitas spesifik 10x lebih kuat dibandingkan aktivitas spesifik enzim Taq polymerase (diisolasi dari bakteri Thermus aquaticus). Penggunaan jenis polimerase DNA berkaitan erat dengan buffer PCR yang dipakai. Dengan menggunakan teknik PCR, panjang fragmen DNA yang dapat diamplifikasi mencapai 35 kilo basa. Amplifikasi fragmen DNA pendek (kurang dari tiga kilo basa) relatif lebih mudah dilakukan. Untuk mengamplifikasi fragmen DNA panjang (lebih besar dari tiga kilo basa) memerlukan beberapa kondisi khusus, di antaranya adalah diperlukan polimerase DNA dengan aktivitas yang kuat dan juga buffer PCR dengan pH dan kapasitas tinggi (High-salt buffer).
OPTIMASI PCR
Untuk mendapatkan hasil PCR yang optimal perlu dilakukan optimasi proses PCR. Secara umum optimasi proses PCR dapat dilakukan dengan cara memvariasikan kondisi yang digunakan pada proses PCR tersebut. Optimasi kondisi berkaitan erat dengan faktor-faktor seperti jenis polimerase DNA; suhu; konsentrasi, dalam hal ini berkaitan dengan dNTPs, MgCl2 dan DNA polimerase; buffer PCR dan waktu.
1.    Jenis polimerase DNA
Kemampuan mengkatalisis reaksi polimerasi DNA pada proses PCR yang terjadi pada tahap ekstensi untuk DNA rantai panjang akan berbeda dengan untuk DNA rantai pendek. Penggunaan jenis DNA polimerase tergantung pada panjang DNA target yang akan diamplifikasi. Untuk panjang fragmen DNA lebih besar dari tiga kilobasa akan memerlukan jenis polimerase dengan aktivitas tinggi.
2.    Konsentrasi dNTPs, MgCl2; polimerase DNA
Konsentrasi optimal dNTPs ditentukan oleh panjang target DNA yang diamplifikasi. Untuk panjang target DNA kurang dari satu kilobasa biasanya digunakan konsentrasi dNTPs sebanyak 100 uM, sedangkan untuk panjang target DNA lebih besar dari satu kilobasa diperlukan konsentrasi dNTPs sebanyak 200 uM. Umumnya konsentrasi optimal MgCl2 berkisar antara 1,0 – 1,5 mM. Konsentrasi MgCl2 yang terlalu rendah akan menurunkan perolehan PCR. Sedangkan konsentrasi yang terlalu tinggi akan menyebabkan akumulasi produk non target yang disebabkan oleh terjadinya mispriming. Jumlah polimerase DNA yang digunakan tergantung pada panjang fragmen DNA yang akan diamplifikasi. Untuk panjang fragmen DNA kurang dari dua kilobasa diperlukan 1,25 – 2 unit per 50 uL campuran reaksi, sedangkan untuk panjang fragmen DNA lebih besar dari dua kilobasa diperlukan 3 – unit per 50 uL campuran reaksi.
3.    Suhu
Pemilihan suhu pada proses PCR sangat penting karena suhu merupakan salah satu faktor yang menentukan keberhasilan suatu PCR. Dalam hal ini suhu berkaitan dengan proses denaturasi DNA templat, annealing dan ekstensi primer. Suhu denaturasi DNA templat berkisar antara 93 – 95oC, ini semua tergantung pada panjang DNA templat yang digunakan dan juga pada panjang fragmen DNA target. Suhu denaturasi yang terlalu tinggi akan menurunkan aktivitas polimerase DNA yang akan berdampak pada efisiensi PCR. Selain itu juga dapat merusak DNA templat, sedangkan suhu yang terlalu rendah dapat menyebabkan proses denaturasi DNA templat tidak sempurna. Pada umumnya suhu denaturasi yang digunakan adalah 94oC. Secara umum suhu annealing yang digunakan berkisar antara 37 - 60oC. Pemilihan suhu annealing berkaitan dengan Tm primer yang digunakan untuk proses PCR. Suhu annealing yang digunakan dapat dihitung berdasarkan (Tm– 5)oC sampai dengan (Tm + 5)oC. Dalam menentukan suhu annealing yang digunakan perlu diperhatikan adanya mispriming pada daerah target dan nontarget, dan keberhasilan suatu proses PCR akan ditentukan oleh eksperimen. Proses ekstensi primer pada proses PCR selalu dilakukan pada suhu 72oC karena suhu tersebut merupakan suhu optimum polimerase DNA yang biasa digunakan untuk proses PCR.
4.    Buffer PCR
Buffer PCR yang digunakan berkaitan dengan pH dan kapasitas buffernya. Dalam perdagangan ada dua jenis buffer PCR yaitu “Low-salt buffer” (pH 8,75 dan kapasitas buffer rendah) dan “High-salt buffer” (pH 9,2 dan kapasitas buffer tinggi). Umumnya buffer PCR tersedia sesuai dengan jenis polimerase DNA nya. Penggunaan jenis buffer ini tergantung pada DNA target yang akan diamplifikasi. Untuk panjang DNA target antara 0 – 5 kilobasa biasanya diperlukan “low-salt buffer” sedangkan untuk panjang DNA target lebih besar dari lima kilobasa digunakan “high-salt buffer”.
5.    Waktu
Pemilihan waktu yang digunakan berkaitan dengan proses denaturasi DNA templat, annealing dan ekstensi primer. Untuk denaturasi DNA template umumnya dilakukan selama 30 – 90 detik, ini semua tergantung pada DNA templat yang digunakan. Waktu denaturasi yang terlalu lama akan merusak templat DNA dan sekaligus dapat menurunkan aktivitas polimerase DNA. Sedangkan waktu denaturasi yang terlalu pendek akan menyebabkan proses denaturasi tidak sempurna. Penentuan waktu untuk proses annealing berkaitan dengan panjang primer. Untuk panjang primer 18 – 22 basa cukup dengan 30 detik, sedangkan untuk panjang primer lebih besar dari 22 basa diperlukan waktu annealing 60 detik. Pemilihan waktu ekstensi primer tergantung pada panjang fragmen DNA yang akan diamplifikasi. Secara umum untuk mengamplifikasi setiap satu kilo basa DNA diperlukan waktu 30 – 60 detik. Pada setiap melakukan PCR harus dilakukan juga kontrol positif, ini diperlukan untuk memudahkan pemecahan masalah apabila terjadi hal yang tidak diinginkan. Selain itu juga harus dilakukan terhadap kontrol negative untuk menghindari kesalahan positif semu.

Pemanfaatan teknologi molekuler
Bioteknologi mempunyai peran penting dalam bidang kedokteran, misalnya dalam pembuatan antibodi monoklonal, vaksin,antibiotika dan hormon.
-       Pembuatan antibodi monoclonal
Antibodi monoklonal adalah antibodi yang diperoleh dari suatu sumber tunggal. Manfaat antibodi monoklonal, antara lain:untuk mendeteksi kandungan hormon korionik gonadotropin dalam urine wanita hamil;mengikat racun dan menonaktifkannya;mencegah penolakan tubuh terhadap hasil transplantasi jaringanlain.
-       Pembuatan vaksin
Vaksin digunakan untuk mencegah serangan penyakit terhadaptubuh yang berasal dari mikroorganisme.Vaksindidapat dari virus dan bakteri yang telah dilemahkan atau racun yang diambil dari mikroorganisme tersebut.
-       Pembuatan antibiotika
Antibiotika adalah suatu zat yang dihasilkan oleh organisme tertentu dan berfungsi untuk menghambat pertumbuhan organismelain yang ada di sekitarnya. Antibiotika dapat diperoleh dari jamuratau bakteri yang diproses dengan cara tertentu.Zat antibiotika telah mulai diproduksi secara besar-besaran pada Perang Dunia II oleh para ahli dari Amerika Serikat danInggris.
-       Pembuatan hormone
Dengan rekayasa DNA, dewasa ini telah digunakan mikroorganisme untuk memproduksi hormon. Hormon-hormon yang telah diproduksi, misalnya insulin, hormon pertumbuhan, kortison,dan testosteron.

Dewasa ini, bioteknologi tidak hanya dimanfaatkan dalam industri makanan tetapi telah mencakup berbagai bidang, seperti rekayasa genetika, penanganan polusi, penciptaan sumber energi,dan sebagainya. Dengan adanya berbagai penelitian serta perkembangan ilmu pengetahuan dan teknologi, maka bioteknologi makin besar manfaatnya untuk masa-masa yang akan datang.
Beberapa penerapan bioteknologi modern sebagai berikut.
a.    Rekayasa genetika
Rekayasa genetika merupakan suatu cara memanipulasikan gen untuk menghasilkan makhluk hidup baru dengan sifat yang diinginkan. Rekayasa genetika disebut juga pencangkokan gen atau rekombinasi DNA. Dalam rekayasa genetika digunakan DNA untuk menggabungkan sifat makhluk hidup. Hal itu karena DNA dari setiap makhlukhidup mempunyai struktur yang sama, sehingga dapat direkomendasikan. Selanjutnya DNA tersebut akan mengatur sifat-sifat makhluk hidup secara turun-temurun. Untuk mengubah DNA sel dapat dilakukan melalui banyak cara, misalnya melalui transplantasi inti, fusi sel, teknologi plasmid,dan rekombinasi DNA.
b.    Transplantasi inti
Transplantasi inti adalah pemindahan inti dari suatu sel ke sel yang lain agar didapatkan individu baru dengan sifat sesuai dengan inti yang diterimanya. Transplantasi inti pernah dilakukan terhadapsel katak. Inti sel yang dipindahkan adalah inti dari sel-sel usus katak yang bersifat diploid. Inti sel tersebut dimasukkan ke dalam ovum tanpa inti, sehingga terbentuk ovum dengan inti diploid. Setelah diberi inti baru, ovum membelah secara mitosis berkali-kali sehingga terbentuklah morula yang berkembang menjadi blastula. Blastula tersebut selanjutnya dipotong-potong menjadi banyak seldan diambil intinya. Kemudian inti-inti tersebut dimasukkan kedalam ovum tanpa inti yang lain. Pada akhirnya terbentuk ovum berinti diploid dalam jumlah banyak. Masing-masing ovum akan berkembang menjadi individu baru dengan sifat dan jenis kelamin yang sama.
c.     Fusi sel
Fusi sel adalah peleburan dua sel baik dari spesies yang sama maupun berbeda supaya terbentuk sel bastar atau hibridoma. Fusisel diawali oleh pelebaran membran dua sel serta diikuti oleh peleburan sitoplasma (plasmogami) dan peleburan inti sel (kariogami). Manfaat fusi sel, antara lain untuk pemetaan kromosom,membuat antibodi monoklonal, dan membentuk spesies baru. Didalam fusi sel diperlukan adanya:
a)    sel sumber gen (sumber sifat ideal);
b)   sel wadah (sel yang mampu membelah cepat);
c)    fusigen (zat-zat yang mempercepat fusi sel).
d.    Teknologi plasmid
Plasmid adalah lingkaran DNA kecil yang terdapat di dalamsel bakteri atau ragi di luar kromosomnya. Sifat-sifat plasmid, antaralain:merupakan molekul DNA yang mengandung gen tertentu;dapat beraplikasi diri;dapat berpindah ke sel bakteri lain;sifat plasmid pada keturunan bakteri sama dengan plasmid induk.Karena sifat-sifat tersebut di atas plasmid digunakan sebagaivektor atau pemindah gen ke dalam sel target.
e.    Rekombinasi DNA
Rekombinasi DNA adalah proses penggabungan DNA-DNAdari sumber yang berbeda. Tujuannya adalah untuk menyambungkan gen yang ada di dalamnya. Oleh karena itu, rekombinasi DNA disebut juga rekombinasi gen.



Tidak ada komentar:

Posting Komentar